首页> 外文OA文献 >Optimization of an electrokinetic mixer for microfluidic applications
【2h】

Optimization of an electrokinetic mixer for microfluidic applications

机译:针对微流体应用的电动混合器的优化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This work is concerned with the investigation of the concentration fields in an electrokinetic micromixer and its optimization in order to achieve high mixing rates. The mixing concept is based on the combination of an alternating electrical excitation applied to a pressure-driven base flow in a meandering microchannel geometry. The electrical excitation induces a secondary electrokinetic velocity component, which results in a complex flow field within the meander bends. A mathematical model describing the physicochemical phenomena present within the micromixer is implemented in an in-house finite-element-method code. We first perform simulations comparable to experiments concerned with the investigation of the flow field in the bends. The comparison of the complex flow topology found in simulation and experiment reveals excellent agreement. Hence, the validated model and numerical schemes are employed for a numerical optimization of the micromixer performance. In detail, we optimize the secondary electrokinetic flow by finding the best electrical excitation parameters, i.e., frequency and amplitude, for a given waveform. Two optimized electrical excitations featuring a discrete and a continuous waveform are discussed with respect to characteristic time scales of our mixing problem. The results demonstrate that the micromixer is able to achieve high mixing degrees very rapidly.
机译:这项工作与电动微混合器中浓度场的研究及其优化有关,以实现高混合速率。混合概念基于在弯曲微通道几何形状中施加到压力驱动的基流上的交替电激励的组合。电激励引起次级电动势分量,这导致曲折弯折内形成复杂的流场。内部有限元方法代码中实现了描述微型混合器中存在的物理化学现象的数学模型。我们首先进行与弯头流场研究相关的模拟实验。仿真和实验中发现的复杂流动拓扑的比较显示出极好的一致性。因此,将经过验证的模型和数值方案用于微混合器性能的数值优化。详细地讲,我们通过找到给定波形的最佳电激励参数,即频率和幅度,来优化次级电动势。关于混合问题的特征时间尺度,讨论了两个具有离散波形和连续波形的优化电激励。结果表明,微混合器能够非常快速地实现高混合度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号